From 1 - 10 / 114
  • Lord Howe Island in the southwest Pacific Ocean is the subaerial remnant of a Late Miocene hot-spot volcano. Erosion of the island has formed a shallow (20 - 120 m) sub-tropical carbonate shelf 24 km wide and 36 km long. On the mid shelf an extensive relict coral reef (165 km2) surrounds the island in water depths of 30-40 m. The relict reef comprises sand sheet, macroalgae and hardground habitats. Inboard of the relict reef a sandy basin (mean water depth 45 m) has thick sand deposits. Outboard of the relict reef is a relatively flat outer shelf (mean depth 60 m) with bedrock exposures and sandy habitat. Infauna species abundance and richness were similar for sediment samples collected on the outer shelf and relict reef features, while samples from the sandy basin had significantly lower infauna abundance and richness. The irregular shelf morphology appears to determine the distribution and character of sandy substrates and local oceanographic conditions, which in turn influence the distribution of different types of infauna communities.

  • This dataset contains species identifications of molluscs collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 8 February 2010. Species-level identifications were undertaken by Richard Willan at the Northern Territory Museum and were delivered to Geoscience Australia on the 15 March 2010. See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.<p><p>This dataset is not to be used for navigational purposes.

  • Physical sedimentological processes such as the mobilisation and transport of shelf sediments during extreme storm events give rise to disturbances that characterise many shelf ecosystems. The intermediate disturbance hypothesis predicts that biodiversity is controlled by the frequency of disturbance events, their spatial extent and the amount of time required for ecological succession. A review of available literature suggests that periods of ecological succession in shelf environments range from 1 to over 10 years. Physical sedimentological processes operating on continental shelves having this same return frequency include synoptic storms, eddies shed from intruding ocean currents and extreme storm events (cyclones, typhoons and hurricanes). Modelling studies that characterise the Australian continental shelf in terms of bed stress due to tides, waves and ocean currents were used here to create a map of ecological disturbance, defined as occurring when the Shield's parameter exceeds a threshold of 0.25. We also define a dimensionless ecological disturbance ratio (ED) as the rate of ecological succession divided by the recurrence interval of disturbance events. The results illustrate that on the outer part of Australia's southern, wave-dominated shelf the mean number of days between threshold events that the Shield's parameter exceeds 0.25 is several hundred days.

  • A key component of marine bioregional planning is to map the spatial patterns of marine biodiversity, often measured as species richness, total abundance or abundance/presence of key taxa. In this study, predictive modelling approaches were used to map soft bottom benthic biodiversity on the Carnarvon Shelf, Western Australia, using a range of physical surrogates. This surrogacy approach could also explicitly link physical environmental attributes to the marine biodiversity patterns. The statistical results show that between 20% and 37% of variances on the two biodiversity measures (Species Richness and Total Abundance) were explained by the Random Forest Decision Tree models. The best statistical validation performance was found at the Point Cloates area. This was followed by the Gnaraloo area, then by the Mandu Creek area. The models identified different individual physical surrogates for the three study areas and the two biodiversity measures. However, it was found that the infaunal biodiversity at the three study areas of the Carnarvon Shelf were driven by similar ecological process. Sediment properties were the most important physical surrogates for the infaunal biodiversity. Coarser and heterogeneous sediments favour higher infaunal species richness and total abundance. The prediction maps indicate the highest infaunal biodiversity at deeper water of the Point Cloates area. In contrast, the majority of the Mandu creek area has low infaunal biodiversity. This may be due to the much narrower shelf width (e.g., ~6 km) in this part of Carnarvon Shelf than the Point Cloates and Gnaraloo areas. The narrow shelf would limit the space for oceanographic processes to work on the sediment and develop heterogeneous sediment properties that support diverse and productive infaunal species.

  • This dataset contains species identifications of echinoderms collected during survey TAN0713 (R.V. Tangaroa, 7 Oct - 22 Nov 2007). Animals were collected from the Faust and Capel basins and Gifford Guyot with a boxcore, rock dredge, or epibenthic sled. Specimens were lodged at Museum of Victoria in June 2008. Species-level identifications were undertaken by Tim O'Hara at the Museum of Victoria and were delivered to Geoscience Australia on 1 July 2008. See GA Record 2009/22 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • Geoscience Australia undertook seabed mapping surveys in the eastern Bonaparte Gulf in 2009/2010 to deliver integrated information relevant to marine biodiversity conservation and offshore infrastructure development. The survey objectives were to characterise the physical, chemical and biological properties of the seabed, document potential geohazards and identify unique or sensitive benthic habitats. Different clustering methods were applied to a 124 sample dataset comprising 74 physical and chemical variables which convey important baseline information about sediment sources, carbon reactivity/redox and sedimentary environments. Results of the UPGMA clustering method were interpreted due to the high cophenetic correlation (0.82), and these clusters discriminated infauna better than clusters based on geomorphology. Major geochemical dimensions evident amongst clusters included grain-size and a cross-shelf transition from Mn and As enrichment (inner shelf) to P enrichment (outer-shelf). Higher P was due to enhanced authigenic-P accumulation. Sponge/gorgonian occurrences were constrained by low Nd/Sr (pointing to a diminishing terrestrial source) and relatively high -15N, and subsurface seepage was shown to enhance the 'terrestrial' (e.g. rare-earth element and Si) signature in outer-shelf sediments. Sponge-dominated shallow bank/terrace clusters with abundant reactive organic matter differentiated on the basis of Si-Al relations (and redox). These habitats shed materials to peripheral Gorgonian-dominated scree environments which had surface-area normalised TOC concentrations that were elevated over usual continental shelf ranges. Trichodesmium were identified as an important source of carbon to inner-shelf plains. Pair-wise ANOSIM results for infauna are brought together in a summary model which highlights the influence of the clusters on benthic biodiversity.

  • The concentration of chlorophyll-a in ocean surface waters is a good indicator of primary productivity. As part of a national-scale analysis of ecosystem processes influencing marine biodiversity, daily MODIS images were processed using NASA's SeaDAS software to generate chlorophyll-a monthly data for the period 2009-2011. Results show that Australian oceans have relatively low surface chlorophyll-a concentrations (average 0.2 mg/m3), with concentrations greater than 0.7 mg/m3 considered to indicate 'high' productivity. On this basis, productivity hotspots are mapped for locations that have 'high' productivity greater than 75% of the time (i.e. 9 out of 12 months). As expected, most productivity hotspots are confined to inner shelf and coastal areas, especially embayments. Key areas include the Great Barrier Reef, Gulf of Carpentaria, Van Diemen Gulf, Joseph Bonaparte Gulf, Kimberley coast, Exmouth Gulf and Shark Bay. Seasonally, the period February to June has larger areas of 'high' productivity. Annually, areas of hotspots decrease from 2009 to 2011. Among the 59 existing and proposed Commonwealth Marine Reserves (CMR), nine have hotspots occupying more than 1% of their area; a result consistent with their largely offshore location. In contrast, 47 out of 128 state/territory Marine Protected Areas (MPAs) which lie in inshore waters have more than 1% of area identified as hotspots. In total, chlorophyll-a hotspots occur in more than 20% (by area) of the state/territory MPAs, compared to less than 0.4% of CMRs. Ongoing analysis will relate these patterns to oceanographic models and biodiversity patterns at regional scales, with a focus on northern Australia.

  • This dataset contains species identifications of echinoderms collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a Smith-McIntyre grab and benthic sleds. Echinoderm specimens were lodged at Museum of Victoria on the 12 February 2010 and Ophiuroid samples were lodged on the 19 April 2010. Species-level identifications were undertaken by Tim O'Hara at the Museum of Victoria and were delivered to Geoscience Australia on the 18 May 2010. See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • This dataset contains species identifications of crinoids collected during survey SOL5117 (R.V. Solander, 30 July - 27 August, 2010). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Museum of Victoria on the 27 August 2010. Species-level identifications were undertaken by Kate Naughton at the Museum of Victoria and were delivered to Geoscience Australia in December 2011. See GA Record 2011/08 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • This study presents new information on the regional geochemical characteristics of deep-sea floor sediments (1300 - 2423 m water depth) on the Lord Howe Rise (deep-sea plateau) and Gifford Guyot (seamount/tablemount), remote areas off eastern Australia. The aim was to provide a coherent synthesis for a suite of geochemical data that can be used to make habitat inferences and to develop surrogates of biodiversity. Sediment characteristics analysed were mineralogy, organic carbon and nitrogen concentrations and isotopic compositions, and concentrations of major and trace elements. We also measured parameters that convey information about the reactivity of organic matter and on the bio-availability of bioactive trace elements (e.g. chlorin indices and acid-extractable elements). Surface sediments from the region were calcareous oozes that were carbon-lean (0.26±0.1%) and had moderate to high chlorin indices (0.62 - 0.97)..